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Opportunistic Function Computation for Wireless
Sensor Networks
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Abstract—Function computation over wireless sensor networks
is investigated, where a set of K sensors observe their sensor read-
ings and a fusion center wishes to learn a predefined function of
the sensor readings via fading multiple access channels (MACs).
In this paper, the arithmetic sum and type functions are consid-
ered since they can yield various fundamental sample statistics
such as mean, variance, maximum, and minimum. We propose
a novel opportunistic in-network computation (INC) framework
in which a subset of sensors with large channel gains oppor-
tunistically participate in the transmission at each time, while all
sensors simultaneously send their observations or only a single
sensor sends its observation in the conventional schemes. We math-
ematically analyze the long-term average computation rate of the
proposed INC, and prove that it achieves a nonvanishing compu-
tation rate even when the number of sensors K tends to infinity,
which is in fact a significant improvement and the first theoret-
ical result in fading MACs. Note that the computation rates of
the conventional schemes become zero as K increases. We fur-
ther show that a similar multiuser diversity gain is still achievable
under delay constraints, which implies that the proposed INC is
restricted to exploit a fixed and finite number of time slots (or
fading instances) for the function computation.

Index Terms—In-network computation, fading channels, lattice
codes, opportunistic communication, power adaptation, wireless
sensor networks.

I. INTRODUCTION

C ONTRARY to traditional wireless networks, the main
goal of communications in wireless sensor networks

(WSNs) is to compute some pre-defined functions of sensor
observations (also called sensor readings) at a fusion cen-
ter, rather than obtaining the observations themselves [1].
Applications of WSNs include disaster alarm, environmental
monitoring, etc. For example, many sensor applications involve
the sample mean, e.g., the average temperature from several
temperature readings. From the current digital communica-
tion paradigm, each sensor may compress its sensor readings,
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independently of channel coding, and then the compressed sen-
sor information is reliably sent to the fusion center via an
appropriate channel coding, which is referred to as source–
channel separation. This source–channel separation approach
is shown to be optimal for point-to-point channels [2]. However,
designing source and channel coding separately is quite subop-
timal for function computation over general WSNs, especially
when the network size increases.

To overcome such limitations of the source–channel separa-
tion approach, communication techniques considering a joint
design of source and channel coding have been actively studied
in the literature [3]–[12], which is referred to as joint source–
channel coding. The potential of linear source coding has been
captured in [7], applying the linear source coding in [3] for the
function computation over Gaussian multiple access channels
(MACs). An efficient way of computing the modulo sum or
the sum of Gaussian sources over Gaussian MACs using lattice
codes has been proposed in [7], [9], see also [13]–[15] for lat-
tice code construction. This lattice-based computation has been
recently extended to multiple receivers called compute-and-
forward [8], in which each relay computes or decodes linear
combination of the sources. In [10], a similar lattice code con-
struction has been used for computing a linear function over
linear finite field networks and the sum of Gaussian sources
over Gaussian networks. More recently, linear source coding
and lattice-based computation have been applied for computing
the arithmetic sum and type functions in [11]. Interactive com-
munication between sensors in order to efficiently compute the
type-threshold function has been studied in [16] from the source
coding perspective and in [12] from the joint source–channel
coding perspective.

Along with the above information-theoretical studies, a sim-
ple computation strategy, called analog function computation
(AFC), has been considered for wireless MACs [17]–[19].
The AFC adopts both pre-processing at each sensor and post-
processing at a fusion center for computing or estimating
functions, in which all sensors concurrently participate in the
transmission and the channel inversion technique is used at each
sensor in order to deal with fading phenomenon [17]. The AFC
was further analyzed in terms of the maximum achievable com-
putation rate in clustered sensor networks [18], but fading and
noise effects were not considered.

The underlying principle of the most joint source–channel
coding designs for function computing is to exploit a similar-
ity between the superposition properties of wireless channels
and desired functions. We can easily find the examples that the
joint source–channel coding approach improves an achievable
computation rate, compared with the source–channel separation
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approach. In spite of the previous studies, however, relatively
little progress has been made so far on how to efficiently com-
pute functions under fading environment. For instance, consider
the computation of the arithmetic sum (or sample mean) of
K sources each of which is observed by K sensors. Suppose
that the K sensors are connected with a fusion center via the
fading MAC, i.e., the channel coefficients are i.i.d. and vary
independently over time. To the best of our knowledge, the
computation rates achievable by straightforwardly applying the
current computation techniques decreases as the number of sen-
sors K increases and eventually converges to zero in the limit
of large K due to fading.

In this paper, we study the function computation problem
over the fading MAC, which has served as a fundamental build-
ing block for general WSNs. We mainly focus on the type
function computation that is able to yield various important
sample statistics such as mean, variance, maximum, minimum,
mode, median and so on, as mentioned in [20]. We propose a
novel opportunistic in-network computation (INC) framework
by considering the time-varying nature of fading channels, in
which a subset of sensors with large channel gains opportunis-
tically participate in the transmission at each time, while all
sensors simultaneously send their observations or only a single
sensor sends its observation in the conventional schemes. The
proposed INC prohibits the computation rate from being limited
by the sensors with deep fading by exploiting the opportunism
of fading channels. We analyze the long-term ergodic compu-
tation rate of the proposed INC, achievable by applying it over
large enough fading instances. We further prove that the pro-
posed INC attains a non-vanishing computation rate even when
the number of sensors in the network tends to infinity, which
significantly improves the previous computation rates converg-
ing to zero as the number of sensors increases. We also show
that a similar multi-user diversity (or opportunistic scheduling)
gain from multiple sensors is still achievable when the proposed
INC is restricted to exploit a fixed and finite number of fading
instances.

The paper is organized as follows. Section II introduces the
system model and formulates the problem. In Section III, we
summarize the main results of this paper and compare them
with the existing results. Section IV presents the proposed
opportunistic INC framework in detail and analyzes the compu-
tation rate of the proposed INC. Section V presents the oppor-
tunistic INC framework under delay constraints. Numerical
examples are provided in Section VI and extensions to more
general networks are given in Section VII. Finally, concluding
remarks are given in Section VIII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the wireless in-network com-
puting model for WSNs and define its achievable computation
rate. Throughout the paper, we denote [1 : n] := {1, 2, · · · , n},
C(x) := log(1 + x), and C+(x) := max {log(x), 0}. Let
diag({ai }i∈[1:n]) denote the diagonal matrix consisting of a1 to
an as its diagonal elements, 1(·) denote the indicator function
of an event, and card(·) denote the cardinality of a set. For a
random variable A, H(A) denotes the entropy of A.

Fig. 1. Wireless in-network computing model.

A. Fading Multiple Access Channels

Consider the computation over the fading MAC depicted in
Fig. 1, in which the fusion center is supposed to compute a
desired function of K sources observed by each of K sen-
sor nodes. The i th sensor node (i ∈ [1 : K ]) is assumed to
observe a discrete source vector whose length is equal to k,
i.e., si = [si [1], · · · , si [k]] ∈ [1 : p]k , where p ∈ N denotes the
number of possible sample values.1 The fusion center computes
a sample-by-sample function of K sources, i.e.,

f (s1[ j], s2[ j], · · · , sK [ j]) for all j ∈ [1 : k]. (1)

For convenience, let the j th sample set of K sources as s[ j] =
[s1[ j], s2[ j], · · · , sK [ j]], where j ∈ [1 : k].

The received signal of the fusion center at the t th time slot is
given by

y[t] =
K∑

i=1

hi [t]xi [t] + z[t], (2)

where xi [t] represents the transmit signal of the i th sensor node
at the t th time slot, hi [t] represents a complex-valued wire-
less channel from the i th sensor node to the fusion center at
the t th time slot, and z[t] denotes the complex Gaussian noise
at the t th time slot, assumed to follow CN(0, 1) and indepen-
dent over time slots. We assume block fading channels in which
hi [t] is i.i.d. drawn from a continuous distribution fh(·) for each
time slot but it remains unchanged during a given time slot. We
further assume that global channel state information (CSI) is
available at all sensor nodes and fusion center, i.e., {hi [t]}K

i=1
is available at time t .2 All sensor nodes are assumed to have an
identical average power constraint, i.e., E[|xi [t]|2] ≤ P for all
i ∈ [1 : K ].

Remark 1: In the considered model, i.i.d. fading is assumed,
i.e., channel statistics are identical for all sensors, which makes
asymptotic analysis tractable by applying the same opportunis-
tic transmission strategy at each sensor in function computing.

1The measurement of the i th sensor node can be regarded to be sampled k
times and each of the samples can be regarded to be mapped to one of numbers
from 1 to p via a kind of quantization process.

2As we will explain in Section IV-A, the proposed scheme requires more
relaxed channel information allowing an efficient implementation of the
required channel feedback.
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We will briefly consider how to extend to asymmetric networks
suffering from different signal attenuation from each sensor to
the fusion center in Section VII-B. �

In this paper, we focus on two desired functions: the arith-
metic sum function and the type (or frequency histogram)
function, as considered in [11], [12], [20]. For completeness,
we formally define the desired function in the following.

Definition 1 (Desired function): Let s = [s1, · · · , sK ] ∈ [1 :
p]K . For the arithmetic sum computation, the desired func-
tion is given by f (s) = {∑K

i=1 ali si }L
l=1, where ali ∈ [0 : q]

and q, L ∈ N. For the type computation, the desired function is
given by f (s) = {b1(s), · · · , bp(s)}, where bl(s) = ∑K

i=1 1si =l

for l ∈ [1 : p].
The arithmetic sum function in this paper is defined as multi-

ple weighted arithmetic sums, which includes the sample mean
function f (s) = 1

K

∑K
i=1 si and the case of estimating each of

the K samples f (s) = {sl}K
l=1 as special cases. Computing the

type function is very powerful since any symmetric function3

can be attained from the type function [11], [12], [20]. Most
fundamental sample statistics such as mean, variance, maxi-
mum, minimum, median, and mode are symmetric functions.
As seen in Definition 1, the type function is represented as
multiple weighted arithmetic sums of indicator functions.

The proposed opportunistic INC constructs the desired func-
tion from a set of local functions by using the locally com-
putable property of the desired function, which is defined in
the following.

Definition 2 (Locally computable function): Suppose that
{λi }N

i=1 are N partition sets of [1 : K ], i.e., λi ∩ λ j = ∅ for all

i, j ∈ [1 : N ] with i �= j and
⋃N

i=1 λi = [1 : K ]. A function is
said to be locally computable if there exists g(·) for any {λi }N

i=1
satisfying f (s) = g( f ({si }i∈λ1), · · · , f ({si }i∈λN )) �

Clearly, both arithmetic sum function and type function are
locally computable from Definition 2.

In this paper, we assume arbitrarily correlated stationary
and ergodic sources. The following definition formally states
the underlying probability distribution and the corresponding
random variables regarding the set of K sources.

Definition 3 (Sources): Let S = [S1, · · · , SK ] ∈ [1 : p]K be
a random vector associated with a joint probability mass
function pS(·). At each j ∈ [1 : k], s[ j] is assumed to be
independently drawn from pS(·). �

Let f (S) denote the desired function induced by the random
source vector S. In the following, we define random vari-
ables associated with the desired function, which will be used
throughout the paper.

Definition 4 (f (S) induced by S): Let us define Ul =∑K
i=1 ali Si for l ∈ [1 : L] and Bl = ∑K

i=1 1Si =l for l ∈ [1 : p],
where L ∈ N. Then f (S) = (U1, · · · ,UL) for the arithmetic
sum function and f (S) = (B1, · · · , Bp) for the type function.�

B. Computing Over Fading MAC

In this subsection, we first define a block code of length
n for the considered wireless INC model. Denote si =

3A function is said to be symmetric if it satisfies f (sσ(1), · · · , sσ(K )) =
f (s1, · · · , sK ) for every permutation σ on [1 : K ].

[si [1], · · · , si [k]] and xi = [xi [1], · · · , xi [n]] as the length-k
source vector and the length-n transmit signal vector of sen-
sor i , respectively. Similarly, denote y = [y[1], · · · , y[n]] as
the length-n signal vector received at the fusion center. Then,
the encoding and decoding functions of the length-n block code
are given as follows.

• (Encoding) The transmit signal vector of sensor i is given
by xi = ψ(si ) for i ∈ [1 : K ].

• (Decoding) The fusion center estimates f̂ (s[ j]) = ϕ j (y)
for all j ∈ [1 : k], which implies the fusion center tries
to obtain each sample-by-sample function based on the
whole received signal vector of length n.

Based on the above block code, the computation rate is
defined in the following.

Definition 5 (Computation rate): The computation rate
R := limn→∞ k(n)

n H( f (S)) is said to be achievable if there
exists a sequence of length-n block codes such that

Pr
[⋃k

j=1{ f̂ (s[ j]) �= f (s[ j])}
]

→ 0 as n increases.4 �
From Definition 5, the computation rate R bits/channel use

is the number of information bits with respect to the desired
function delivered reliably by each channel use. Note that R in
Definition 5 indicates the ergodic or long-term average compu-
tation rate over fading blocks. Hence, it is crucially important
to design an efficient communication coding scheme in order to
increase the computation rate for a given desired function over
fading channels. In particular, the primary aim of this paper
is to establish such a coding scheme that is able to provide a
non-vanishing computation rate independent of the number of
sensors K for a broad class of desired funtions by considering
the function class in Definition 1.

III. PRELIMINARIES AND MAIN RESULTS

In this section, we briefly introduce existing INC schemes
and their limitations in fading environment, and then state our
main results. We further provide some numerical results in
order to demonstrate an improved computation rate from the
proposed opportunistic INC. For easy presentation, we omit the
time slot index t and denote the channel coefficient from sensor
i by hi in rate expressions. The statistical expectation in rate
expressions is over the channel coefficients.

A. Previous Work

In [11], the computation rate for the arithmetic sum and
type functions in Definition 1 has been investigated over the
Gaussian (non-fading) MAC. That is the case where hi [t] = hi

in (2) and it is fixed over all time slots. The authors showed that

R(h1, · · · , hK ) = C+
(

1

K
+ min

i∈[1:K ]
|hi |2 P

)
(3)

is achievable, see [11, Theorem 3].5 By applying [11,
Theorem 3] to the fading MAC in Section II, we can show that

4Note that k(n) denotes the number of reliably computable function values
with a length-n block code, which is a function of n.

5The computation rate in [11] is defined as k(n)
n . We present the results in

[11] based on Definition 5.
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R = E
[
C+

(
1

K
+ min

i∈[1:K ]
|hi |2 P

)]
(4)

is achievable. To improve the computation rate for fading envi-
ronments, long-term power control has been considered in [11,
Theorem 5], provided that

R = E

[
C+

(
1

K
+ mini∈[1:K ] |hi |2 P

E[mini∈[1:K ] |hi |2/|h1|2]

)]
(5)

is achievable, where 1
E[mini∈[1:K ] |hi |2/|h1|2]

≥ 1 is the gain from

power control. Note that we assume i.i.d. fading channels over
K sensors and h1 is used as a representative coefficient with-
out loss of generality. Another simple approach is that each
sensor node transmits its source separately to the fusion center
without INC, which is also known as a time sharing technique,
achieving the computation rate of

R = 1

K
E
[
C(|h1|2 P)

]
, (6)

where h1 is used again as a representative coefficient without
loss of generality.

For i.i.d. Rayleigh fading channels, the computation rates
in (4) to (6) achievable by the conventional INC techniques
decrease as the number of sensors K increases, and eventu-
ally converge to zero for large K , see also numerical results
in Section VI. To the best of our knowledge, there exists no
INC framework that is able to achieve a non-vanishing com-
putation rate for general i.i.d. fading channels in the large K
regime [7], [8], [10]–[12], [20]–[22]. Therefore, the primary
goal of this paper is to design an efficient INC framework that
achieves a non-vanishing computation rate for general i.i.d. fad-
ing channels even if the number of sensors K in the network
increases.

B. Main Results

We first present the computation rate of the proposed oppor-
tunistic INC over the fading MAC in Theorem 1 and then prove
that it achieves a non-vanishing computation rate regardless
of K in Corollary 1. The detailed descprition of the proposed
opportunistic INC will be given in Section IV.

Theorem 1 For any M, N ∈ N satisfying M N = K , the
computation rate of the opportunistic INC over the fading MAC
described in Section II is given by

R = 1

N
E

⎡
⎢⎢⎣C+

⎛
⎜⎜⎝ 1

M
+ |hπM |2 K P∑M

i=1 E
[

|hπM |2
|hπi |2

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ , (7)

where {πi }K
i=1 denotes the set of ordered sensor indices of

[1 : K ] such that |hπ1 | ≥ |hπ2 | ≥ · · · ≥ |hπK |.
Proof: We refer to Sections IV-A to IV-C for the

proof. �
By setting M = K and N = 1 in Theorem 1, the achievable

computation rate is given by

R = E

⎡
⎢⎣C+

⎛
⎜⎝ 1

K
+ |hπK |2 K P∑K

i=1 E
[ |hπK |2

|hi |2
]
⎞
⎟⎠
⎤
⎥⎦

= E

⎡
⎢⎣C+

⎛
⎜⎝ 1

K
+ |hπK |2 P

E
[ |hπK |2

|h1|2
]
⎞
⎟⎠
⎤
⎥⎦ , (8)

where the second equality follows from the fact that channel
coefficients are i.i.d. Hence, Theorem 1 generalizes the result in
[11, Theorem 5]. By setting M = 1 and N = K in Theorem 1,
on the other hand,

R = 1

K
E
[
C
(
|hπ1 |2 K P

)]
(9)

is achievable, which improve the computation rate in (6) by
introducing opportunistic transmission and power control. For
fair comparison, we will use (9) as the computation rate of the
separation-based approach for the rest of this paper.

As we will explain in details in Section IV, the proposed
opportunistic INC provides a general framework exploiting
both the superposition property of wireless channels, which has
been used for the INC schemes in non-fading networks [7], [8],
[10], [11], and the locally computable property of the desired
function, which has been used for INC schemes in tree networks
[20], [23] and interactive computing between nodes [12], [21].
For the fading MAC, the former approach corresponds to the
case when M = 1 and the latter approach corresponds to the
case when M = K in Theorem 1, respectively.

Finding the M that maximizes the computation rate in
Theorem 1 is quite challenging because it depends on K and
P as well as the channel distribution fh(·). The following
corollary shows that the proposed opportunistic INC attains
a non-vanishing computation rate even if K tends to infinity
by setting M = K

2 . The numerical results in Section VI also
demonstrate that the numerically optimal M for i.i.d. Rayleigh
fading is approximately given as K

2 , see Table II. The follow-
ing corollary shows that M approximately given as K

2 indeed
provides a non-vanishing computation rate for any i.i.d. fading
channels.

Corollary 1 As K increases, the achievable computation rate
in Theorem 1 converges to

R = min

(
�E

[
C
(
|h1|2 P

)]
,

1 −�

2
C+(2μP)

)
, (10)

where � ∈ (0, 1) and μ denotes the median of the distribution
f|h|2(·), which is induced by fh(·).

Proof: We refer to Section IV-D for the proof. �
Note that � and μ in Corollary 1 do not depend on K ,

and thus R is not a function of K . Therefore, the proposed
scheme achieves a non-vanishing computation rate if P > 1

2μ .
For i.i.d. Rayleigh fading, for instance, f|h|2(·) follows the
exponential distribution with parameter one, i.e., f|h|2(x) =
exp(−x) and μ = ln(2). Hence a non-vanishing computation
rate is achievable if P > 1

2 ln(2) , which is approximately equal
to −1.4 dB.

In practical WSNs, on the other hand, in-network function
computing over a large number of fading blocks may not be
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feasible due to delay constraints, system complexity, energy
efficiency, etc. In order to address such practical constraints,
we also propose an opportunistic INC framework that is con-
strained to code only over a finite number of fading blocks and
derive its computation rate under the delay constraints. The fol-
lowing theorem states the delay-limited computation rate of the
proposed opportunistic INC.

Theorem 2 For any M, N ∈ N satisfying M N = K , the
computation rate of the opportunistic INC over the fading MAC
described in Section II under the delay constraint of N fading
blocks is given by

R = 1

N
E

⎡
⎢⎢⎣C+

⎛
⎜⎜⎝ 1

M
+

mint∈[1:N ]

{∣∣hψM [t][t]
∣∣2} K P

∑N
t=1

∑M
i=1 E

[
|hψM [t][t]|2
|hψi [t][t]|2

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ ,
(11)

where, for t ∈ [1 : N ], {ψi [t]}K−M(t−1)
i=1 denotes the set of sen-

sor indices of [1 : K ] \ ⋃t−1
t ′=1{ψi [t ′]}M

i=1 such that |hψ1[t][t]| ≥
|hψ2[t][t]| ≥ · · · ≥ |hψK−M(t−1)[t][t]|.6

Proof: We refer to Section V-A for the proof. �
From the above definition, {ψi [t]}K−M(t−1)

i=1 implies the set

of sensor indices that is not included in
⋃t−1

t ′=1{ψi [t ′]}M
i=1,

which is ordered according to their channel gains. For exam-
ple, ψ1[t] indicates the sensor index having the largest channel
gain among the remaining sensors after (t − 1) transmission
durations. Note that card({ψi [t]}K−M(t−1)

i=1 ) decreases by M for
each fading block since M sensors simultaneously send their
observations in each fading block.

IV. OPPORTUNISTIC IN-NETWORK COMPUTATION

We first propose a novel INC framework exploiting both
the opportunistic communication for fading environment and
the locally computable property of the desired function in
Sections IV-A to IV-C, which provides the computation rate
in Theorem 1. We then analyze the computation rate of the
proposed INC framework in order to prove Corollary 1 in
Section IV-D.

For the conventional INC schemes explained in Section III-
A, all sensor nodes simultaneously participate in the trans-
mission, and the fusion center directly computes the desired
function. For fading environments, however, the computation
rates of these schemes are limited by the minimum channel gain
as shown in (4) and (5), and they converge to zero as the num-
ber of sensors increases for i.i.d. Rayleigh fading. To revolve
such limitation, the proposed INC technique adopts the oppor-
tunistic transmission in which only the sensors having largest
channel gains participate in the transmission at each time slot.
The fusion center first computes the local functions consisting
of a subset of sensors, and then obtains the desired function
from the local functions computed over multiple time slots.

For the proposed opportunistic INC, for M and N satisfy-
ing M N = K , a set of M sensors with the largest channel
gains among all sensors opportunistically participate in the

6For notational simplicity, we assume that
⋃0

i=1 Ai = ∅.

local function computation. Then the fusion center is able to
obtain the desired function from N local functions computed
at each time slot if the union of N sensor sets participating
each of N local function computations is the same as the entire
set of K sensors, by using the locally computable property in
Definition 2. In order to compute the desired function using the
locally computable property as explained above, however, the
following technical issues should be addressed:

• Since a set of M sensors participating the local func-
tion computation is completely determined by the channel
realization at each time slot, all possible

(K
M

)
sensor sub-

sets, meaning that all possible
(K

M

)
local functions, will

appear over large enough time slots. Hence, it should be
established in detail how to pair the

(K
M

)
/N local func-

tions in order to obtain the desired function utilizing all
possible

(K
M

)
local functions.

• In order to compute sample-by-sample desired functions
(see (1) at the fusion center, sample indices of each
N local functions used for the desired function con-
struction should be the same. Hence, sample indices
for local computing should be carefully aligned, based
on the established pairing rule for the desired function
construction.

• The same philosophy of long-term power control applied
in [11, Theorem 5] is also applicable to obtain similar
power gain. For this case, however, long-term power con-
trol satisfying the average power constraint P is more
complicated than that in [11, Theorem 5] due to oppor-
tunistic transmission.

In the following subsections, we formally address the above
technical issues.

A. Opportunistic Participation and Adaptive Power Control

For each time slot t ∈ [1 : n], let us define {πi [t] ∈ [1 :
K ]}K

i=1 as the set of reordered sensor indices such that
|hπ1[t][t]| ≥ |hπ2[t][t]| ≥ · · · ≥ |hπK [t][t]|.

At each time slot t , the M sensors in {πi [t]}M
i=1 participate in

the transmission and the fusion center computes the local func-
tion f (sπ1[t], · · · , sπM [t]). Let Pi [t] denote the transmit signal
power of sensor i at time slot t . We set

Pπi [t][t] =
⎧⎨
⎩c

|hπM [t][t]|2
|hπi [t][t]|2 for i ∈ [1 : M],

0 otherwise,
(12)

where c > 0 is a constant independent of channel realizations.
Then

E [Pi [t]] =
K∑

j=1

Pr(i = π j [t])E
[
Pi [t]|i = π j [t]

]

(a)= c
M∑

j=1

Pr(i = π j [t])E

[
|hπM [t][t]|2
|hπ j [t][t]|2

]

(b)= c

K

M∑
j=1

E

[
|hπM [t][t]|2
|hπ j [t][t]|2

]
, (13)
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where (a) follows from (12) and (b) follows since the channel
coefficients are i.i.d. Hence, in order to satisfy E [Pi [t]] ≤ P ,
we set

Pπi [t][t] =

⎧⎪⎪⎨
⎪⎪⎩

K P∑M
j=1 E

[
|hπM [t][t]|2
|hπ j [t][t]|2

] |hπM [t][t]|2
|hπi [t][t]|2 for i ∈ [1 : M],

0 otherwise.
(14)

In Section II, we assume global CSI at all sensor nodes and
the fusion center for convenience, but sensor i only requires
|hπi [t][t]|2, |hπM [t][t]|2, and {π j [t]}M

j=1 to implement the oppor-

tunistic power control in (14). Note that
∑M

j=1 E
[

|hπM [t][t]|2
|hπ j [t][t]|2

]
is a deterministic value independent of instantaneous channel
gains. The following procedure briefly explains how to attain
the required information.

• First, the fusion center estimates each of the K channel
coefficients based on a reference signal from each sensor.

• Second, the fusion center calculates |hπM [t][t]|2 and
{π j [t]}M

j=1 from the estimated channel coefficients and
broadcasts them to all sensors.

• Third, the fusion center calculates |hπi [t][t]|2 from the
estimated channel coefficients and sends it to sensor i for
all i ∈ [1 : K ].

B. Computation Rate for Local Functions

Recall that, at each time slot t , the M sensors in {πi [t]}M
i=1

participate in the transmission and the fusion center com-
putes the local function f (sπ1[t], · · · , sπM [t]). Now consider
the computation rate for the above local function. Let R′(t)
denote the computation rate at time slot t for the local func-
tion f (sπ1[t], · · · , sπM [t]). We apply the same computing code
proposed in [11] for each local function computation. We refer
to [11, Theorem 3] for the detailed code construction and also
refer to [11, Section IV-A] for the intuitive explanation of how
to compute the arithmetic sum function over the Gaussian (non-
fading) MAC. Hence, from (3), the computation rate of the local
function f (sπ1[t], · · · , sπM [t]) is given as

R′[t] = C+
(

1

M
+ min

i∈[1:M]
|hπi [t][t]|2 Pπi [t][t]

)

= C+

⎛
⎜⎜⎝ 1

M
+ min

i∈[1:M]
|hπi [t][t]|2 ·

K P∑M
j=1 E

[
|hπM [t][t]|2
|hπ j [t][t]|2

] |hπM [t][t]|2
|hπi [t][t]|2

⎞
⎟⎟⎠ (15)

= C+

⎛
⎜⎜⎝ 1

M
+ |hπM [t][t]|2K P∑M

j=1 E
[

|hπM [t][t]|2
|hπ j [t][t]|2

]
⎞
⎟⎟⎠ , (16)

where the second inequality follows from (14).

C. Construction of the Desired Function Via Local Functions

Since only M sensors opportunistically participate in the
transmission at each time slot, in order to construct the desired
function f (s) in Definition 1, the fusion center needs N local
functions. Let λ1 to λN denote the subsets of M sensors. Then,
from the locally computable property of f (s) in Definition 2,
the fusion center is able to construct it by using f ({si }i∈λ1) to
f ({si }i∈λN ) if

⋃N
l=1 λl = [1 : K ] is satisfied.

In order to exploit such locally computable property, how-
ever, the first two technical issues mentioned at the beginning
of this section should be addressed. To address them, we first
define some sensor and time index sets as follows. Let

� = {λ ⊆ [1 : K ] : card(λ) = M} (17)

denote the set of all sensor subsets consisting of M sensors
in each subset, where card(�) = (K

M

)
. For λ ∈ �, define Tλ =

{t ∈ [1 : n] : {πi [t]}M
i=1 = λ} as the set of time slot indices that

the sensors in λ participate in the transmission. We further
define

	 =
{
ω = (λ1, · · · , λN ) ∈ �N :

N⋃
l=1

λl = [1 : K ]

}
(18)

as the set of all possible N sensor subsets that can be used for
constructing the desired function from the locally computable
property in Definition 2, where card(	) = ∏N−1

l=0

(K−Ml
M

)
.

For λ ∈ �, let 	λ = {	 ∈ 	 : λ ∈ ω} as the set of N sen-
sor subsets that include λ as an element, where card(	λ) =
N

∏N−1
l=1

(K−Ml
M

)
.

1) Sample-by-Sample Computing: Before stating the pro-
posed scheme in details, we first provide an intuitive expla-
nation on how to handle two technical issues mentioned at
the beginning of this section, i.e., about the sample-by-sample
desired function computation. For easy presentation, we explain
based on the case where K = 4 and M = N = 2. For this case,

� = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},
	 = {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((1, 4), (2, 3)),

((2, 3), (1, 4)), ((2, 4), (1, 3)), ((3, 4), (1, 2))}. (19)

From 	, we are able to define the transmission scheme
at each sensor and the desired function computation by
using computed local functions at the fusion center. Suppose
that n = 12 and T(1,2) = {5, 8}, T(1,3) = {1, 10}, T(1,4) =
{9, 12}, T(2,3) = {2, 6}, T(2,4) = {4, 7}, T(3,4) = {3, 11}. Then,
the transmission of each sensor and the local function computa-
tion at the fusion center are given in Table I. For simplicity, we
assume that the number of local functions computable by a sin-
gle channel use is equal to one. Specifically, at time slot t = 1,
sensors 1 and 3 send s1[2] and s3[2] respectively and the fusion
center computes f (s1[2], s3[2]). Note that they send their sec-
ond source at time slot t = 1 since (1, 3) firstly appears in the
second element in 	. Similarly, at time slot t = 2, sensors 2
and 3 send s2[3] and s3[3] respectively and the fusion center
computes f (s2[3], s3[3]) since (2, 3) firstly appears in the third
element in 	. Each sensor and the fusion center perform the
same procedure for the rest of time slots. For instance, at time
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TABLE I
THE TRANSMITTED SOURCE AT EACH SENSOR AND THE COMPUTED

LOCAL FUNCTION AT THE FUSION CENTER

slot t = 10, sensors 1 and 3 send s1[5] and s3[5] respectively
since (1, 3) secondly appears in the fifth element in 	.

After computing 12 local functions as in Table I, the
fusion center attains 6 desired functions again based on 	.
Specifically, the first element in 	 is given by ((1, 2), (3, 4))
and, therefore, the two local functions computed at time
slots 5 and 3 are used to construct f (s[1]), i.e., f (s[1]) =
g( f (s1[1], s2[1]), f (s3[1], s4[1])). Similarly, f (s1[2], s3[2])
and f (s2[2], s4[2]) computed at time slots 1 and 4 respectively
are used to construct f (s[2]) from the second element in 	. In
the same manner, the fusion center attains the rest of the desired
functions.

2) Detailed Construction: For notational convenience,
f ({si }i∈λ) denotes the set of sample-by-sample local functions,
i.e.,

f ({si }i∈λ) = { f ({si [1]}i∈λ), · · · , f ({si [k]}i∈λ)}, (20)

where λ ∈ �. In the above example, we assume that card(Tλ)
is the same for all λ ∈ �. In practice, however, card(Tλ) is ran-
dom, varying over channel realizations. The following lemma
characterizes the minimum deterministic number of card(Tλ),
which is the same for all λ ∈ �, in the limit of large n.

Lemma 1 For any ε > 0, the probability that∣∣∣∣∣1

n
card(Tλ)− 1(K

M

)
∣∣∣∣∣ ≥ ε (21)

for all λ ∈ � is lower bounded by 1 − (K
M)

4nε2 .

Proof: Since channel coefficients are i.i.d.,
Pr({πi [t]}M

i=1 = λ) is the same for all λ ∈ �, given by

Pr({πi [t]}M
i=1 = λ) = 1(K

M

) (22)

for all λ ∈ �. Therefore, from the strong typicality in [24,
Lemma 2.12], Lemma 1 holds. �

By setting ε = 1
log n in Lemma 1, card(Tλ) ≥ n

(K
M)

− n
log n for

all λ ∈ � with probability greater than 1 − (K
M)(log n)2

4n , which
converges to one as n increases. Therefore, from Lemma 1, at
least

T :=
n
(K

M)
− n

log n

card(	λ)

=
n
(K

M)
− n

log n

N
∏N−1

l=1

(K−Ml
M

) (23)

time slots in Tλ can be used for computing the desired function
based on 	. Denote such T time slots in Tλ as Tλ,ω, where
Tλ,ω1 ∩ Tλ,ω2 = ∅ for ω1 �= ω2 ∈ 	λ.

Suppose that ω is the lth element in 	. Then, for i ∈ [1 :
K ], define the length-U source vector si (ω) = [si [(l − 1)U +
1], · · · , si [lU ]] consisting of the ((l − 1)U + 1)th source to the
(lU )th source of sensor i , where U ∈ N will be determined
later.

For each ω ∈ 	, the time slots in Tλ,ω are used to compute
the set of sample-by-sample local functions f ({si (ω)}i∈λ) for
all λ ∈ ω, see the definition in (20). Then the sample-by-sample
desired functions f ({si (ω)}i∈[1:K ]) can be attained based on the
computed sample-by-sample local functions.

Let us first explain how to compute f ({si (ω)}i∈λ) using
the time slots in Tλ,ω for given ω ∈ 	 and λ ∈ ω. Let
xi,λ,ω(si (ω)) ∈ C

T ×1 denote the length-T time-extended trans-
mit signal vector of sensor i during t ∈ Tλ,ω, where i ∈ [1 : K ].
That is, the set of sources si (ω) is mapped into xi,λ,ω(si (ω))

and transmitted during the time slots in Tλ,ω. Recall that, at
each time slot t ∈ Tλ,ω, the transmit power of each element in
xi (λ, ω) is adjusted based on (14). Specifically, we construct

xi,λ,ω(si (ω)) = �i,λ,ωx′
i,λ,ω(si (ω)), (24)

where �i,λ,ω = diag

({√
Pi [t]

|hi [t]|
hi [t]

}
t∈Tλ,ω

)
and x′

i,λ,ω(si (ω))

is the lattice-based transmit signal vector for the distributed
INC satisfying the average transmit power of one used in [11,
Theorem 3], see also [8], [13], [14] for the lattice construction.
Here, the definition of Pi [t] is given by

Pi [t] =

⎧⎪⎪⎨
⎪⎪⎩

K P∑M
j=1 E

[
|hπM [t][t]|2
|hπ j [t][t]|2

] |hπM [t][t]|2
|hi [t]|2 for i ∈ {π j [t]}M

j=1,

0 otherwise.
(25)

from (14). Obviously, xi,λ,ω(si (ω)) = 0 from (25) if i /∈ λ since
the M sensors with the largest channel gains are in λ for t ∈
Tλ,ω. Then, sensor i transmits xi,λ,ω(si (ω)) during t ∈ Tλ,ω for
all i ∈ [1 : K ].

Let yλ,ω ∈ C
T ×1 denote the length-T time-extended

received signal vector of the fusion center during t ∈ Tλ,ω, that
is given by

yλ,ω =
K∑

i=1

Hi,λ,ωxi,λ,ω(si (ω))+ zλ,ω

=
∑
i∈λ

Hi,λ,ωxi,λ,ω(si (ω))+ zλ,ω, (26)



4052 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 6, JUNE 2016

where Hi,λ,ω = diag({hi [t]}t∈Tλ,ω ) and zλ,ω is the length-T
time-extended noise vector during t ∈ Tλ,ω. Then, from (24),

yλ,ω =
∑
i∈λ

Hi,λ,ω�i,λ,ωx′
i,λ,ω + zλ,ω

=
∑
i∈λ

H′
i,λ,ωx′

i,λ,ω + zλ,ω, (27)

where H′
i,λ,ω = diag({h′

i [t]}t∈Tλ,ω ) and

h′
i [t] = hi [t]

√
Pi [t]

|hi [t]|
hi [t]

=
√√√√√ K P∑M

j=1 E
[

|hπM [t][t]|2
|hπ j [t][t]|2

] |hπM [t][t]|. (28)

Therefore, from (15), the computation rate of

1

T

∑
t∈Tλ,ω

C+

⎛
⎜⎜⎝ 1

M
+ |hπM [t]|2 K P∑M

j=1 E
[

|hπM [t]|2
|hπ j [t]|2

]
⎞
⎟⎟⎠ (29)

is achievable for computing the local function f ({si }i∈λ), which
converges to the ergodic rate of

R′ := E

⎡
⎢⎢⎣C+

⎛
⎜⎜⎝ 1

M
+ |hπM |2 K P∑M

j=1 E
[

|hπM |2
|hπ j |2

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (30)

as n increase because card(Tλ,ω) = T increases as n increases.
More specifically, the fusion center is able to compute
f ({si (ω)}i∈λ) by setting U = R′T

H( f (S)) during t ∈ Tλ,ω.
Let us now explain how to construct f ({si (ω)}i∈[1:K ]) using

the time slots in
⋃
λ∈�:λ∈ω Tλ,ω for given ω ∈ 	. From now on,

assume U = R′T
H( f (S)) . During t ∈ ⋃

λ∈�:λ∈ω Tλ,ω, the fusion
center first computes { f ({si (ω)}i∈λ)}λ∈�:λ∈ω. Notice that, from
the definition of si (ω), the source indices are aligned for the
same ω. Hence, by using the locally computable property of
the desired function in Definition 2, the fusion center is able
to attain f ({si (ω)}i∈[1:K ]) from { f ({si (ω)}i∈λ)}λ∈�:λ∈ω during
t ∈ ⋃

λ∈�:λ∈ω Tλ,ω.
Since card(	) = ∏N−1

l=0

(K−Ml
M

)
, the number of the com-

puted desired functions during t ∈ [1 : n] is given by

k(n) =
(

N−1∏
l=0

(
K − Ml

M

))
U

=
(

N−1∏
l=0

(
K − Ml

M

))
R′T

H( f (S))
(31)

and, as a result, the computation rate of

R = k(n)H( f (S))
n

(a)=
(∏N−1

l=0

(K−Ml
M

))
R′T

n

(b)=
(∏N−1

l=0

(K−Ml
M

))
R′

n

n
(K

M)
− n

log n

N
∏N−1

l=1

(K−Ml
M

)
= 1

N
R′

(
1 −

(K
M

)
log n

)
(32)

is achievable, where (a) and (b) follow from (31) and (23)
respectively. In conclusion, (7) is achievable as n increases,
which complete the proof of Theorem 1.

D. Non-Vanishing Computation Rate

In this subsection, we prove Corollary 1. Suppose that K is
even. Let μ̄K denote the sample median for {|hi |2}i∈[1:K ]. By
setting M = K

2 and N = 2 in Theorem 1, we have

R = 1

2
E

⎡
⎢⎢⎣C+

⎛
⎜⎜⎝ 2

K
+ |hπK/2 |2 K P∑K/2

i=1 E
[ |hπK/2 |2

|hπi |2
]
⎞
⎟⎟⎠
⎤
⎥⎥⎦

(a)≥ 1

2
E
[
C+

(
2

K
+ 2|hπK/2 |2 P

)]
(b)≥ 1

2
E
[
C+

(
2

K
+ 2μ̄K P

)]
, (33)

where (a) follows since |hπi |2 ≥ |hπK/2 |2 for all i ∈ [1 : K/2]

and (b) follows since μ̄K = 1
2 (|hπK/2 |2 + |hπK/2−1 |2) for even

K . As K increases, μ̄K asymptotically follows the Gaussian
distribution with mean μ and variance 1

4K ( f|h|2 (μ))2
[25]. Hence,

from (33), we have limK→∞ R = 1
2C+(2μP) for even K . Now

suppose that K is odd. Then the first sensor transmits its source
to the fusion center using a � fraction of time slots, which at
least achieves a rate of�E

[
C
(|h1|2 P

)]
. For the rest of the sen-

sors, the fusion center computes f (s2, s3, · · · , sK ) using the
rest of 1 −� fraction of time slots, which at least achieves a
rate of 1−�

2 E
[
C+

(
2

K−1 + 2μ̄K−1 P
)]

from (33). Then finally,

the fusion center computes the desired function using the
locally computable property. i.e., f (s) = g(s1, f (s2, · · · , sK )).
Hence

R = min

(
�E

[
C
(
|h1|2 P

)]
,

1 −�

2
E
[
C+

(
2

K − 1
+ 2μ̄K−1 P

)])
(34)

is achievable for odd K , which converges to

min
(
�E

[
C
(|h1|2 P

)]
, 1−�

2 C+ (2μP)
)

as K increases.

In conclusion, Corollary 1 holds.
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Fig. 2. Opportunistic wireless INC under delay constraint.

V. OPPORTUNISTIC IN-NETWORK COMPUTATION UNDER

DELAY CONSTRAINT

In this section, we consider opportunistic INC under delay
constraint, which is defined as the number of required fading
blocks for INC. Counting the number of required fading blocks
is meaningful in practical systems because it is related not only
to the delay normalized by coding or fading blocks but also
overall implementation complexity [26]–[28].

In order to address such an delay issue, we propose a mod-
ified version of the opportunistic INC depicted in Fig. 2. For

example, assume that K = 6, M = 2, and N = 3. As the same
manner in Section IV, the M sensors having the largest chan-
nel gains participate in the local function computation at the
first time slot. Suppose that sensors 1 and 3 participate and the
fusion center computes f (s1, s3) at the first time slot. Then at
the second time slot, the sensors except 1 and 3 opportunis-
tically participate and suppose that sensors 2 and 6 participate
and the fusion center computes f (s2, s6) at the second time slot.
Finally, at the third time slot, sensors 4 and 5 participate and
the fusion center computes f (s4, s5). Then, the fusion center
attains f (s1, · · · , s6) from the computed f (s1, s3), f (s2, s6),
and f (s4, s5) from the locally computable property (Definition
2), which guarantees the delay of N time slots.

A. Proof of Theorem 2

In this subsection, we prove Theorem 2. At each time slot
t ∈ [1 : N ], the M sensors in {ψi [t]}M

i=1 participate in the trans-
mission and the fusion center computes the local function
f (sψ1[t], sψ2[t], · · · , sψM [t]), see the definition of {ψi [t]}M

i=1 in
Theorem 2. That is, at each time slot t ∈ [1 : N ], the M sensors
with the largest channel gains among the sensors that did not
participate in the previous slots participate in the transmission.
Let Pi [t] denote the transmit signal power of sensor i at time
slot t . We set

Pψi [t][t] =
⎧⎨
⎩c

|hψM [t][t]|2
|hψi [t][t]|2 for i ∈ [1 : M],

0 otherwise,
(35)

where c > 0 is a constant independent of channel realizations.
Then

E [Pi [t]] =
N∑

t=1

M∑
j=1

Pr(i = ψ j [t])E
[
Pi [t]|i = ψ j [t]

]

(a)= c
N∑

t=1

M∑
j=1

Pr(i = ψ j [t])E

[
|hψM [t][t]|2
|hψ j [t][t]|2

]
(36)

where the second equality follows from (35). For t = 1, Pr(i =
ψ j [t]) = 1

K . For t ∈ [2 : N ], we have

Pr(i = ψ j [t])=
(

t−1∏
k=1

Pr
(

i /∈ {ψ j [k]}M
j=1|i /∈ {ψ j [k − 1]}M

j=1,

· · · , i /∈ {ψ j [1]}M
j=1

))
(37)

· Pr(i = ψ j [t]|i /∈ {ψ j [t − 1]}M
j=1, · · · , i /∈ {ψ j [1]}M

j=1)

=
(

t−1∏
k=1

K − Mk

K − M(k − 1)

)
1

K − M(t − 1)
= 1

K

Hence, Pr(i = ψ j [t]) = 1
K for t ∈ [1 : N ] and then from (36)

E [Pi [t]] = c

K

N∑
t=1

M∑
j=1

E

[
|hψM [t][t]|2
|hψ j [t][t]|2

]
. (38)
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Hence in order to satisfy E [Pi [t]] ≤ P , we set Pψi [t][t] as⎧⎪⎪⎨
⎪⎪⎩

K P∑N
t=1

∑M
j=1 E

[
|hψM [t][t]|2
|hψ j [t][t]|2

] |hψM [t][t]|2
|hψi [t][t]|2 for i ∈ [1 : M],

0 otherwise.

(39)

Now consider the computation rate for the local function at
time slot t , i.e., f ({sψi [t]}M

i=1). In a similar manner as in (15),
from (39), the computation rate of

R′′[t] = C+
(

1

M
+ min

i∈[1:M]
|hψi [t][t]|2 Pψi [t][t]

)

= C+

⎛
⎜⎜⎝ 1

M
+ |hψM [t][t]|2K P∑N

t=1
∑M

j=1 E
[

|hψM [t][t]|2
|hψ j [t][t]|2

]
⎞
⎟⎟⎠ . (40)

is achievable for computing f ({sψi [t]}M
i=1). Recall that⋃N

t=1{ψi [t]}M
i=1 = [1 : K ], which means that all sensors par-

ticipate in the local function computation once during N time
slots. Hence the fusion center is able to attain the desired
function from the locally computable property, i.e., f (s) =
g( f ({sψi [1]}M

i=1), · · · , f ({sψi [N ]}M
i=1)). That is, the computa-

tion rate of

R = 1

N
min

t∈[1:N ]

{
R′′[t]

}

= 1

N
C+

⎛
⎜⎜⎝ 1

M
+

mint∈[1:N ]

{∣∣hψM [t][t]
∣∣2} K P

∑N
t=1

∑M
i=1 E

[
|hψM [t][t]|2
|hψi [t][t]|2

]
⎞
⎟⎟⎠ (41)

is achievable within the delay of N time slots for comput-
ing each sample-by-sample desired function. By applying the
above opportunistic INC scheme repeatedly over large enough
blocks, the computation rate of (11) is achievable within the
delay of N time slots (fading blocks) for computing each
sample-by-sample desired function. In conclusion, Theorem 2
is proved.

VI. NUMERICAL RESULTS

In this section, we provide several numerical examples of the
computation rates of the opportunistic INC and compare them
with the computation rates of the conventional INC schemes.

Fig. 3 shows the computation rate in Theorem 1 with respect
to M . The results demonstrate that the computation rate in
Theorem 1 with optimally chosen M outperforms the con-
ventional approaches, which are the cases where M = 1 and
M = K in the figure. In addition, the optimal M resulting in the
largest computation rate varies according to the average trans-
mit power P .7 The computation rate certainly increases as P
increases.

Fig. 4 shows the computation rate in Theorem 1 with opti-
mal M as the number of sensors in the network increases.
As shown in the figure, the proposed INC with optimal M
achieves a non-vanishing computation rate even if K increases,

7The average signal-to-noise ratio (SNR) is the same as P since the noise
variance is given by one in Section II.

Fig. 3. Computation rates with respect to M when K = 8 (top) and K = 32
(bottom) for i.i.d. Rayleigh fading.

while the computation rates attained by the conventional INC
schemes (the cases where M = 1 and M = K ) converge to
zero as K increases. The formal proof of achieving a non-
vanishing computation rate is given in Corollary 1. Notice that
this improvement comes from the opportunistic scheduling gain
and the optimal power adjustment. Therefore, the computa-
tion rate gap between the proposed INC and the conventional
INC schemes becomes significant as the number of sensors K
increases. The numerically optimal M maximizing the compu-
tation rate in Theorem 1 is given in Table II, which is a function
of K and P . As seen in Table II, the optimal M increases as
P increases and, more importantly, it scales approximately as
K
2 as K increases. Table III shows the average required trans-

mit power P at each sensor for achieving given computation
rates when K = 16 and K = 64. As seen in the table, the
proposed opportunistic INC can significantly save the average
transmit power compared with the conventional INC schemes.
For instance, it achieves R = 1 bits/sec/Hz with 22% and 18%
of power consumption compared with the conventional INC
scheme in [11] (the case where M = K ).

Fig. 5 compares the computation rates of the proposed INC
with/without delay contraints in Theorems 1 and 2 with respect
to the average transmit power P . For both cases, the number
of active sensors in each slot M is optimally chosen. Hence,
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Fig. 4. Computation rates with respect to K when P = 0 dB (top), P = 10 dB
(middle), and P = 20 dB (bottom) for i.i.d. Rayleigh fading.

Theorem 2 is able to compute each sample-by-sample desired
function within the delay of at most K fading blocks since
N ≤ K . Although Theorem 1 provides a better computation
rate than Theorem 2, the delay for computing each sample-
by-sample desired function can be arbitrarily large. As seen in
the figure, Theorem 2 guarantees a fixed and finite delay (less
than K fading blocks) with the cost of small computation rate
degradation.

We further compare the computation rates of the proposed
INC with/without delay constraint with the conventional INC
schemes in Fig. 6. Note that the INC scheme in [11, Theorem 5]
computes the desired function using a single fading block,
i.e., delay of one fading block, which corresponds to the case
where M = K in Theorem 1 (or the case where M = K in
Theorem 2), see also the equivalent rate expression in (5). As
seen in the figure, the proposed INC scheme in Theorem 2
outperforms the previous approaches (M = K and M = 1 with
and without delay constraint), providing the guaranteed delay
of at most K fading blocks. In addition, the computation rate
gap from Theorem 1 with optimally chosen M decreases as K
increases.

Fig. 7 compares the proposed opportunistic INC schemes
with the non-opportunistic INC scheme, i.e., M sensors are
chosen uniformly at random at each time slot and the fusion
center performs the local function computation of the chosen
M sources. Then with the same construction of the desired
function via local functions in Section IV-C, the computation
rate of

R = 1

N
E

⎡
⎣C+

⎛
⎝ 1

M
+ mini∈[1:M] |hi |2 N P

E
[

mini∈[1:M] |hi |2
|h1|2

]
⎞
⎠
⎤
⎦ (42)

is achievable for any M, N ∈ N satisfying M N = K from
Theorem 1. Notice that we can also derive (42) from Theorem 2
by randomly selecting M sensors that did not participate in the
previous slots. In the figure, for each K , we set M to numeri-
cally maximize the computation rate of each scheme. As seen
in the figure, the computation rate of the non-opportunistic INC
scheme decreases as K increases. Therefore, opportunistic sen-
sor selection based on channel gains is essentially required to
achieve a non-vanishing computation rate with increasing K .

VII. DISCUSSIONS

A. Scaling Laws

It has been shown in [11, Theorem 6] that the computation
rate in (5), established in [11, Theorem 5], achieves the compu-
tation capacity within a constant bps/Hz gap regardless of P for
i.i.d. Rayleigh fading, which provides a universal performance
guarantee for any P when the number of sensors K is fixed and
finite.

Let us now focus on the asymptotic behaviour of the com-
putation capacity as K increases when P is fixed and finite. As
the same manner in [11, Section III-D], by allowing full coop-
eration between K sensors, the computation capacity is upper
bounded by

E

⎡
⎣log

⎛
⎝1 +

(
K∑

i=1

|hi [t]|φ∗
i [t]

)2⎞⎠
⎤
⎦ (43)

(a)≤ 2E

[
log

(
1 +

K∑
i=1

|hi [t]|φ∗
i [t]

)]

(b)≤ 2 log

(
1 +

K∑
i=1

E
[|hi [t]|φ∗

i [t]
])

(c)≤ 2 log (1 + K P) , (44)
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TABLE II
OPTIMAL M MAXIMIZING THE COMPUTATION RATE IN THEOREM 1 FOR I.I.D. RAYLEIGH FADING

TABLE III
REQUIRED AVERAGE TRANSMIT POWER P AT EACH SENSOR FOR ACHIEVING A GIVEN COMPUTATION RATE

Fig. 5. Computation rates with and without delay constraint for i.i.d. Rayleigh
fading.

where φ∗
i [t] denotes the optimal power allocation of sen-

sor i , which is a function of {hi [t]}K
i=1. Here (a) fol-

lows since log(a + b) ≤ 2 log(
√

a + √
b) for any a, b ≥ 0,

(b) follows from Jensen’s inequality, and (c) follows since

E[|hi [t]|φ∗
i [t]] ≤

√
E[|hi [t]|2]E[(φ∗

i [t])2] ≤ P . Therefore, the

computation capacity scales as at most �(log(K )) as K
increases. However, it is quite challenging to prove whether the
computation rate in (5) provides �(1) scaling law or not when
mini∈[1:K ] |hi [t]|2 converges to zero as K increases.

In Theorem 1 and Corollary 1, we have shown that the com-
putation rate of the proposed opportunistic INC scales as �(1)
as the number of sensors K increases for any i.i.d. fading envi-
ronment if P is larger than some constant independent of P .
Therefore, our result characterizes that the computation capac-
ity is given by	(1) and O(log K ), which tighten an achievable
lower bound as 	(1) by proposing opportunistic INC.

B. Asymmetric Channels

In order to verify the benefit of opportunistic INC for gen-
eral asymmetric channels, we consider the geometric network
model in this subsection. Specifically, assuming that the dis-
tance between sensor i and the fusion center is given by di ,

the received signal of the fusion center at the t th time slot is
represented as

y[t] =
K∑

i=1

hi [t]

dγ /2i

xi [t] + z[t], (45)

where γ ≥ 2 denotes the path-loss exponent and hi [t] denotes
block fading assumed as the same manner in (2). Therefore,
the same opportunistic INC in Section IV is applicable for
asymmetric channels based on {hi [t]}K

i=1 at each time slot, i.e.,
the opportunism based on the relative received signal strength
normalized by the average received signal strength at each sen-
sor. Then, from Theorem 1, the achievable computation rate is
straightforwardly given as

R = 1

N
E

⎡
⎢⎢⎣C+

⎛
⎜⎜⎝ 1

M
+ |hπM |2 K (P/dγmax)∑M

i=1 E
[

|hπM |2
|hπi |2

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ (46)

for any M, N ∈ N satisfying M N = K , where dmax =
maxi∈[1:K ]{di } and the definition of {πi }K

i=1 is given in
Theorem 1. That is, sensor i transmits with a reduced average
power of P( di

dmax
)γ because the computation rate is restricted

by the sensor located at the maximum distance from the fusion
center.

In simulation, we focus on two random geometric networks:
a set of K sensors are uniformly deployed at random in a 1 × 1
square area for the first model and in a

√
K × √

K square area
for the second model, similar to dense and extended networks
respectively in [29]–[31]. For both models, the fusion center is
assumed to be located at the network center.

Fig. 8 plots the computation rate in (46) with optimal M
as the number of sensors K in the network increases for both
models. For comparison, we also plot the the conventional
INC schemes (the cases where M = 1 and M = K ). In sim-
ulation, we plot the computation rates averaged out over large
enough network realizations. Similar to Fig. 4, the proposed
INC outperforms the conventional approaches due to the oppor-
tunistic gain for function computing. In particular, for the first
model, the distance of each sensor from the fusion center is
upper bounded by a some constant independent of K , which
provides a non-vanishing computation rate even for asymmet-
ric configurations. For the second model, on the other hand,
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Fig. 6. Computation rates with and without delay constraint when K = 8 (top),
K = 16 (middle), and K = 32 (bottom) for i.i.d. Rayleigh fading.

the maximum distance from the fusion center increases as K
increases, which let the computation rate eventually converge
to zero as K increases. In such case, if sensors can communi-
cate to each other, then the computation rate might be improved
by combining opportunistic INC with multihop routing, which
will be discussed in the next subsection.

Fig. 7. Computation rates of the non-opportunistic INC with respect to K when
P = 10 dB for i.i.d. Rayleigh fading.

Fig. 8. Computation rates with respect to K for the first model (top) and the
second model (bottom) when P = 5 dB and γ = 3 for i.i.d. Rayleigh fading.

C. Multihop Networks

In many practical cases of interest, some sensors might not
have direct communication links to the fusion center or they
might not want to directly communicate with the fusion center



4058 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 6, JUNE 2016

Fig. 9. An example sensor network consisting of 8 sensors and a fusion center.

due to severe signal attenuation by long-distance communica-
tion. In such cases, multihop routing using other sensors as
relays can improve the computation rate. In this subsection,
we briefly explain how to combine the proposed INC with a
general multihop routing framework. Fig. 9 provides a high-
level illustration based on an example network consisting of
8 sensors and a fusion center. For instance, sensors 1 and 2
are able to communicate with sensor 3 via the fading MAC
as in Section II-A. First, sensor 3 computes the local function
f (s1, s2) by opportunistic INC from sensors 1 and 2 and, sim-
ilarly, sensor 5 computes the local function f (s6, · · · , s8) by
opportunistic INC from sensors 6, 7, and 8. Then sensors 3
and 5 can construct f (s1, · · · , s3) and f (s5, · · · , s8) respec-
tively from their own sources. Lastly, the fusion center can
attain the desired function f (s1, · · · , s8) again by opportunis-
tic INC from sensors 3, 4, and 5. This is possible because
each sensor first constructs the corresponding local function
and compress it in the proposed INC, see [11, Theorem 3]
for the detailed code construction. That is, even if sensor 3
attains s1, s2, s3, it first constructs f (s1, · · · , s3) to apply the
proposed INC. As studied in [32], [33] and the references
therein, appropriate scheduling and power control can con-
struct spanning trees for general sensor networks. Then, we
can apply the above INC scheme on the top of constructed tree
networks.

VIII. CONCLUDING REMARKS

In this paper, we investigated the function computation prob-
lem in WSNs, focusing on the design of an efficient INC
strategy for fading environment. The proposed INC framework
exploits both the superposition property of wireless channel
and the locally computable property of the desired function,
combined with opportunistic transmission. We showed that a
non-vanishing computation rate is achievable by the opportun-
sitic INC even if the number of sensors in the network increases,
which is the first theoretic result. Although we considered the
fading MAC, the proposed INC is straightforwardly applica-
ble to wireless networks having orthogonal components and
tree networks, attaining improved computation rates for a broad
class of WSNs.
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